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Abstract 

Assessing feature contributions to a specific diagnosis 

is commonly done by statistical analysis. In the context of 

heart failure (HF) diagnosis from the electrocardiogram 

(ECG), this work compares feature contributions assessed 

by deep learning with those obtained by statistical 

analysis. Data consists of ECG pairs (baseline and follow-

up) from patients with a history of myocardial infarction. 

When the follow-up ECG was made, controls patients had 

remained stable, while cases patients had developed HF. 

The 42 features that characterized each ECG served as 

inputs of a deep-learning neural network (NN) created by 

our Repeated Structuring & Learning Procedure. Subject-

specific feature ranking was obtained from the local-

interpretable model-agnostic explanatory algorithm and 

processed to obtain feature relevances (FR). Additionally, 

42 areas under the curve (AUC) by univariate statistical 

analysis were obtained. FR and AUC were compared by 

Pearson's correlation coefficient (ρ). After training, the 

NN had a 99% classification performance. FR ranged from 

0.32 to 4.47; AUC ranged from 23% to 82%. Correlation 

analysis yielded no significant association between AUC 

and FR (ρ=0.18, P-value=0.25). Deep-learning and 

statistical-analysis feature contributions to HF detection 

were discordant. Further studies will investigate which of 

the two approaches better reflects clinical interpretation. 

 

 

1. Introduction 

The 12-lead 10-s resting electrocardiogram (ECG) is a 

standard measurement in the evaluation of patients, 

especially in cardiology. The ECG, in fact, contains 

detailed information about the electrical heart action [1]. 

Thus, clinical ECG interpretation aims to determine if 

ECG features (wave morphologies, intervals) are normal 

or pathological [2]. Knowing which ECG features 

contribute to the diagnosis of a specific disease is essential 

in this process. Physicians use (combinations of) ECG 

features when diagnosing an ECG. Automated ECG 

interpretation programs incorporated in 

electrocardiographs operate similarly. However, in clinical 

practice, manual and automatic diagnosis/interpretation 

are flawed in several ways: manual ECG diagnosis is 

subjective and depends on the physician's experience; 

automated interpretation of the ECG cannot perform at the 

level of a top cardiologist, and it is still unclear, in several 

clinical scenarios, which ECG features would help 

diagnose a specific condition. 

Thus, further research on the role of specific ECG 

features in diagnosing a specific cardiac disease/condition 

is necessary. Such research is usually done by conventional 

statistical analysis, evaluating the ECG feature 

performances in separating cases and controls (subjects 

with/without altered clinical status or disease). 

Here, we try to identify ECG features that may be 

related to heart-failure (HF) development. Currently, the 

potential role of the ECG in HF diagnosis is not clear. HF 

affects about 2% of adults and is associated with a risk of 

death of about 35% at one year from the first diagnosis [3]. 

HF is characterized by reduced exercise tolerance and/or 

fluid retention, when it can be demonstrated that these 

symptoms are related to a form of cardiac pathology:  

structural and/or functional abnormalities, including 

changes in the cardiac electrical properties [4]. Thus, 

considering that timely HF diagnosis helps to slow down 

its natural development, research on ECG features to detect 

emerging HF remains imperative. 

Recently, new advanced algorithms were presented to 

help the research on ECG feature interpretation [5]. These 

innovative methods try to mimic the clinical diagnosis, 

applying advanced optimization algorithms that rely on 

deep learning [5]. Results already presented in the 

literature proved the usefulness of these tools in terms of 

performance (high classification score) [6,7], but their 

feature interpretation was never compared with results 

provided by conventional statistics.  

Thus, this work aims to compare the contributions of 

ECG features in a deep-learning algorithm for the detection 

of emerging HF with those obtained by conventional 

statistical analysis. 
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2. Materials and Method 

2.1. Database 

Data consist of 58 10-second 12-lead ECG pairs 

(baseline and follow-up ECGs) constituting a retrospective 

observational database of the Leiden University Medical 

Center. All subjects had a history of myocardial infarction 

(MI) and were clinically stable during the recording of 

baseline ECG (routinely performed at least six months 

after the acute MI). Of these subjects, 33 (controls) 

remained clinically stable during follow-up ECG recording 

(one year after the acute MI). The remaining 25 subjects 

(cases) developed HF; their follow-up ECG was made on 

the occasion of their first presentation with HF. 

The ECGs were processed by LEADS software [8]. 

Each ECG pair was characterized by 42 features (see Table 

1). Among the 42 features, 27 were computed as serial 

features (i.e., by subtracting baseline ECG feature values 

from follow-up ECG feature values), while 15 features 

were computed in the follow-up ECG only. 

 

2.2. Deep Learning Analysis 

Data was divided into training set (70%) and validation 

set (30%), maintaining the case/control prevalence in both 

sets. A deep-learning neural network (NN) with 42 inputs 

and case/control outputs was obtained by Repeated 

Structuring & Learning Procedure (RS&LP) [9]. The NN 

was created with neurons having sigmoid activation 

functions and coefficients (weights and biases) that ranged 

between -1 and +1. The scaled-conjugate-gradients 

algorithm [10] was used as optimization algorithm. Classes 

were balanced according to the inverse of their prevalence 

to compensate for case-control disproportion [11]. The NN 

was automatically constructed during training by using the 

training set. The RS&LP algorithm alternates phases of 

structuring, adding and initializing neurons, and phases of 

training, evaluating the increment of the classification task. 

A validation-based early stopping criterion [12] was 

applied to avoid overfitting, using the validation set. 

To interpret the feature contributions to classification, 

the local-interpretable model-agnostic explanatory (LIME) 

algorithm [13-15] was applied to the learned NN. LIME is 

an explainer algorithm that interprets NN predictions by 

combining features and coefficients of the trained NN. It 

locally approximates the NN with an interpretable model, 

ranking features according to their impact on 

classification. Thus, for each patient, a feature ranking was 

constructed by analysing the coefficients of the trained 

NN. Finally, feature relevance (FR) was obtained as the 

weighted average (by ranking) of the percentage of patients 

presenting a specific feature in each of the ranking 

positions. Thus, 42 FRs were obtained, reflecting the 

relevance of each of the ECG features listed in Table 1. 

Table 1. Feature list and description. 

 

  Feature Description 
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F1 QRS-duration difference  
F2 Modulus of QRS-duration difference  
F3 Difference in maximal QRS-vector 

magnitude  
F4 Modulus of difference in maximal QRS-

vector magnitude  
F5 QRS-integral vector magnitude difference  
F6 Modulus of QRS-integral vector magnitude 

difference  
F7 QRS-complexity difference  
F8 Modulus of QRS-complexity difference  
F9 Magnitude of J-vector difference 
F10 Difference in maximal T-vector magnitude  
F11 Modulus of difference in maximal T-vector 

magnitude  
F12 T-integral vector magnitude difference  
F13 Modulus of T-integral vector magnitude 

difference  
F14 T-wave complexity difference  
F15 Modulus of T-wave complexity difference  
F16 T-wave symmetry difference  
F17 Modulus of T-wave symmetry difference  
F18 Difference in the number of leads with 

positive T waves  
F19 Number of leads with a T-wave polarity 

change 
F20 QT-duration difference  
F21 Modulus of QT-duration difference  
F22 Magnitude of the ventricular-gradient 

difference vector  
F23 QRS-T spatial-angle difference  
F24 Modulus of QRS-T spatial-angle difference  
F25 Heart-rate difference  
F26 Modulus of heart-rate difference  
F27 Difference in ECG-derived ventricular 

gradient optimized for right ventricular 
pressure overload  
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F28 QRS duration 
F29 Maximal QRS-vector magnitude 
F30 QRS-integral vector magnitude 
F31 QRS complexity 
F32 Magnitude of J-vector 
F33 Maximal T-vector magnitude 
F34 T-integral vector magnitude 
F35 T-wave complexity  
F36 T-wave symmetry 
F37 Number of leads with positive T waves 
F38 QT duration  
F39 Magnitude of the ventricular gradient  
F40 QRS-T spatial-angle 
F41 Heart rate 
F42 ECG-derived ventricular gradient 

optimized for right ventricular pressure 
overload 
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2.2. Statistical Analysis 

Conventional univariate statistical analysis was 

performed for each feature by computing the area under the 

curve (AUC) of the receiver operating characteristic 

(ROC). Thus, 42 AUCs were obtained. 

 

2.2. Deep Leaning vs. Statistical Analysis 

The trained NN was characterized in terms of 

architecture, and its performance was quantified by ROC 

analysis, computing the AUC and its 95% confidence 

intervals (95% CI). The agreement between deep-learning 

analysis and statistical analysis was evaluated by Pearson's 

correlation coefficient (ρ) and linear regression analysis of 

FR on AUC.  

 

3. Results 

The trained NN had a [13,7,6] architecture and an AUC 

of 99% (95% CI: 98%-100%). Values of FR and AUC are 

reported in Figure 1. FR ranged from 4.47% (F31; QRS 

complexity of the follow-up ECG) to 0.32% (F3; 

difference in maximal QRS-vector magnitude between the 

follow-up and baseline ECGs), while AUC ranged from 

82% (F24; modulus of QRS-T spatial-angle difference 

between follow-up and baseline ECGs) to 23% (F37; 

number of leads with positive T waves in the follow-up 

ECG). Agreement between FR and AUC was poor 

(ρ=0.18; P-value=0.25; FR=0.02·AUC+1.46; Figure 2). 

 

4. Discussion 

The aim of the paper was to evaluate the contribution of 

ECG features to HF diagnosis, and to compare the analyses 

performed by deep-learning interpretation and by 

conventional statistical analysis. 

To be reliable, the LIME algorithm should be applied to 

NN providing very high classification performance. Thus, 

in this work, LIME was applied to the trained NN, 

considering the subjects used to construct the NN 

(AUC=99%). These subjects have been used by the 

RS&LP to optimize the NN architecture and performance 

and, thus, can constitute the perfect dataset to interpret the 

reasoning performed by the trained NN. However, in deep 

learning, a high training performance may be a symptom 

of a poor generalization property of the NN. For this 

reason, RS&LP was used to create the NN since this 

constructive procedure proved reliable in preserving the 

generalization property of the trained NN thanks to its 

construction rules [9,16,17].  

Despite their common statistical background, 

conventional statistics and deep learning present 

differences. Firstly, statistical approach is based on linear 

methods to discriminate cases and controls. 

 
 

Figure 1. Values of FR and AUC for all features (from F1 

to F42). 

 

 
 

Figure 2. Scatter plot of AUC and FR obtained by 

conventional statistical analysis and deep learning, 

respectively. The regression line is depicted in orange. 
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Differently, deep learning applies innovative nonlinear 

methodologies, optimizing the shape of hyperplanes with 

the aim of improving classification performance. 

Moreover, conventional statistical analysis is based on a 

univariate statistical approach, evaluating only the 

discriminant power of each variable without considering 

possible feature interactions. On the other hand, all features 

participate in the training of a NN, irrespective of the 

associations between features.  

Results obtained by the deep-learning algorithm are not 

in agreement with those obtained by conventional 

statistical analysis (ρ=0.18; P-value=0.25). The most 

prominent features (F19 and F31 with the NN, F9 and F24 

with univariate AUC) all make sense, however. Features 

F19 (number of leads with a T-wave polarity change) and 

F24 (modulus of the QRS-T spatial-angle difference) are 

both serial features and can be interpreted as a decrease of 

concordance or an increase in discordance of the ECG. 

This indicates that the relation between the depolarization 

and repolarization processes in the heart deteriorates, a 

clear trend towards electrical dysfunctioning. In addition, 

the role of feature F31 (QRS complexity in the follow-up 

ECG) suggests the presence of a deteriorated 

depolarization process in HF patients (increased QRS 

complexity signals QRS fragmentation).  

 

5. Conclusions 

Our study is an initial step in identifying important ECG 

features to HF diagnosis; it suggests that serial ECG 

comparison may be helpful in HF diagnosis because both 

statistical and NN approaches identified a change in 

discordance as a potentially ominous sign for HF 

development. Additionally, the NN approach suggests that 

high QRS complexity might be indicative of HF. 

Identifying diagnostic features by means of a deep-

learning model helps to counterweigh the black-box 

character of artificial intelligence. Further studies will 

investigate which of the two approaches superiorly reflects 

the clinical diagnosis, which remains the gold standard. 
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